
Allele Registry

API specification

version 0.09.02

Table of Contents
Introduction..............................................................................................................................................2

Sending HTTP requests.........................................................................................................................2
Bash..................................................................................................................................................2
Ruby.................................................................................................................................................3
Python...............................................................................................................................................3

Authentication.......................................................................................................................................4
Error responses......................................................................................................................................4
Parameter set in HTTP header...............................................................................................................5

Objects exposed by this API....................................................................................................................6
Canonical Allele....................................................................................................................................6
Reference Sequence............................................................................................................................10
Gene.....................................................................................................................................................12

Query or register an allele using HGVS expression............................................................................13
Query canonical allele by HGVS expression......................................................................................13
Bulk query of alleles with file containing HGVS expressions............................................................13
Bulk query of alleles with VCF file....................................................................................................13
Register a new allele............................................................................................................................14

Queries....................................................................................................................................................15
Query objects by their names..............................................................................................................15
Query canonical alleles by reference sequence locus.........................................................................16
Query canonical alleles by genes........................................................................................................17
Query canonical alleles by identifiers from external records..............................................................17



Introduction
Allele  Registry provides URIs for  canonical  alleles  defined at  the level  of nucleic  acid sequences
(genomic and transcript alleles) or at the protein level (amino acid sequences). Different labels and
definitions of the same allele  are  always represented by the same URI. Canonical  allele  embraces
various names of the same allele and its definitions in the context of different reference sequences (both
assemblies  and transcripts).  Nucleic  acid  and amino acid  canonical  alleles  are  defined in  separate
spaces and never share the same URI.
This document describes API for Allele Registry that allows querying as well as registering alleles and
obtaining their URI in real time. The API is based on HTTP protocol and always returns data in JSON
format. New fields may be added in the future, so developers using this API should assume that all
structures may contain additional fields not described in this document. 
Allele  Registry  is  identified  on  the  Internet  by  DNS name.  This  address  will  be  denoted  in  this
document by {ServerName}. Official instance of Allele Registry is currently available at the address
http://reg  .  genome.network and  http://reg.clinicalgenome.org. There is also test server available at the
location http://reg.test.genome.network.

Sending HTTP requests
The Allele Registry API is based on HTTP requests. There are three types of HTTP requests used by
this API: GET, POST and PUT. All HTTP GET requests can be send with the use of any Internet
browser (just copy the URL to the address bar), but for sending POST and PUT requests some more
advanced tool is needed. Moreover, all PUT requests requires authentication, what is described in the
next section. Below you can find examples how to send all these three types of requests from bash
console and from chosen programming languages.

Bash

These sections contain sequence of commands which may be run from bash console (by copy & paste).
They require some additional tools like curl or sha1sum and depend on standard tools like echo, cut
etc.. Different behavior of these dependencies may perturb some examples. However provided code
snippets should work on the majority of modern Linux distributions.

# send GET request with parameter
URL="http://reg.test.genome.network/allele?hgvs=NC_000010.11:g.87894077C>T"
URL=${URL//>/%3E}   # convert symbol > to special code %3E
curl -X GET "${URL}"

# send POST requests with parameter and payload taken from the file alleles.txt
URL="http://reg.test.genome.network/alleles?file=hgvs"
curl -X POST "${URL}" --data-binary @alleles.txt

# calculate authentication parameters and send PUT request
# you have to set LOGIN and PASSWORD here
URL="http://reg.test.genome.network/allele?hgvs=NC_000010.11:g.87894077del"
IDENTITY=`echo -n "${LOGIN}${PASSWORD}" | sha1sum  | cut -d \  -f 1`
TIME=`date +%s | tr -d "\n"`
TOKEN=`echo -n "${URL}${IDENTITY}${TIME}" | sha1sum  | cut -d \  -f 1`
REQUEST="${URL}&gbLogin=${LOGIN}&gbTime=${TIME}&gbToken=${TOKEN}"
curl -X PUT "${REQUEST}"

http://reg.test.genome.network/
http://reg.clinicalgenome.org/
http://reg.genome.network/
http://reg.genome.network/
http://reg.genome.network/


Ruby

All included ruby code snippets should work with ruby version >= 1.8.7. 

require 'net/http'
require 'digest/sha1'

# send GET request with parameter
url = 'http://reg.test.genome.network/allele?hgvs=NC_000010.11:g.87894077C>T'
url = URI.escape(url)   # convert symbol > to special code %3E
http = Net::HTTP.new(URI(url).host)
req = Net::HTTP::Get.new(url)
res = http.request(req)
print res.body

# send POST requests with parameter and payload taken from the file alleles.txt
url = 'http://reg.test.genome.network/alleles?file=hgvs'
http = Net::HTTP.new(URI(url).host)
req = Net::HTTP::Post.new(url)
req.body = File.open('alleles.txt').read
res = http.request(req)
print res.body

# calculate authentication parameters and send PUT request
# you have to set login and password here
url = 'http://reg.test.genome.network/allele?hgvs=NC_000010.11:g.87894077del'
identity = Digest::SHA1.hexdigest("#{login}#{password}")
gbTime = Time.now.to_i.to_s
token = Digest::SHA1.hexdigest("#{url}#{identity}#{gbTime}")
request = "#{url}&gbLogin=#{login}&gbTime=#{gbTime}&gbToken=#{token}"
http = Net::HTTP.new(URI(url).host)
req = Net::HTTP::Put.new(request)
res = http.request(req)
print res.body

Python

Python code snippets should work with python version >= 2.7. The library “request” is not a part of the
Python Standard Library and probably must be installed separately (in Linux it should be available
through default package manager).

import requests
import hashlib
import time

# send GET request with parameter
url = 'http://reg.test.genome.network/allele?hgvs='
# convert symbol > to special code %3E
url += requests.utils.quote("NC_000010.11:g.87894077C>T") 
res = requests.get(url)
print(res.text)

# send POST requests with parameter and payload taken from the file alleles.txt
url = 'http://reg.test.genome.network/alleles?file=hgvs'
res = requests.post(url, data=open('alleles.txt').read())
print(res.text)

# calculate authentication parameters and send PUT request



# you have to set login and password here
url = 'http://reg.test.genome.network/allele?hgvs=NC_000010.11:g.87894077del'
identity = hashlib.sha1((login + password).encode('utf-8')).hexdigest()
gbTime = str(int(time.time()))
token = hashlib.sha1((url + identity + gbTime).encode('utf-8')).hexdigest()
request = url + '&gbLogin=' + login + '&gbTime=' + gbTime + '&gbToken=' + token
res = requests.put(request)
print(res.text)

Authentication
While all HTTP GET and HTTP POST requests are accepted without authentication, active account in
Allele Registry is required for sending all HTTP PUT requests. Three special parameters must be added
to every request that needs an authentication:

1. gbLogin – user login
2. gbTime – current time saved as integer number of seconds since the Epoch
3. gbToken – special  token calculated  from original  request  URL, gbLogin,  gbTime and user

password
The parameter gbToken is calculated in the following way:

SHA1_hex(url + SHA1_hex(gbLogin + password) + gbTime)

where url is the original request (without gbLogin, gbTime and gbToken, if there is no parameters it
must have question mark at the end), operator + denotes simple string concatenation and SHA1_hex(...)
denotes hexadecimal representation of SHA1 calculated on given ASCII string.
In the section above there are sample code snippets which may be used for preparing a request with
authentication (variables url, login and password must be set in advance).

Error responses

All responses with status different than HTTP SUCCESS contain a body with a single JSON object 
consisting of the following fields:

Name Type When returned? Description

errorType string always Error type, see the table below

description string always Description of error type given above

message string may be missing Detailed information about error

Returned error object may also contain some additional fields, depending on the errorType. The field 
errorType always contains one of the short strings from the table below.

errorType description HTTP status

NotFound The system does not contain any data 
about requested resource.

404 (Not Found)

AuthorizationError Access denied because of authorization 
failure.

403 (Forbidden)



HgvsParsingError Given HGVS expressions cannot be 
parsed. It is incorrect or not supported.

400 (Bad Request)

IncorrectHgvsPosition Position given in HGVS expression is 
incorrect.

400 (Bad Request)

IncorrectReferenceAllele Given allele from reference sequence is 
incorrect. It does not match actual 
sequence at given position.

400 (Bad Request)

NoConsistentAlignment Given allele cannot be mapped in 
consistent way to reference genome.

400 (Bad Request)

UnknownCDS The boundary of coding sequence for 
given transcript is not known.

400 (Bad Request)

UnknownGene Given reference sequence is not 
assigned to any gene.

400 (Bad Request)

UnknownReferenceSequence Given reference sequence is not known. 400 (Bad Request)

VcfParsingError Sent VCF file cannot be parsed. It is 
incorrect or contains unsupported 
features.

400 (Bad Request)

InternalServerError Internal error occurred. Please, report it 
as an error.

500 (Internal Server Error)

Parameter set in HTTP header

All responses returned by Allele Registry have special parameter set in HTTP header:

• X-CAR-Version

It contains version of Allele Registry installed on the server. All official releases are denoted by three 
numbers separated by dots (e.g. 0.08.06).



Objects exposed by this API
There are three main types of objects accessible through API and uniquely identified by the following 
URIs:

• canonical alleles – http://{ServerName}/allele/{id}
• genes – http://{ServerName}/gene/{id}
• reference sequences – http://{ServerName}/refseq/{id}

HTTP request to object's URI returns HTTP NOT FOUND status if there is no object with a given URI
or HTTP OK status with JSON representation of the object in response's body. The formats of possible
responses are described in the following sections. All objects may contain some additional fields, not
described in the documentation below. No assumption should be made about these fields.  

Canonical Allele
URL: http://{ServerName}/allele/{id}
The successful response contains exactly one object with the following fields.

Name Type When returned? Description

@id An allele URI always The URI of the allele.

type “nucleotide” or 
“amino-acid”

always The type of the allele.

activeUris An array of allele 
URIs

if and only if the URI is inactive The list of active allele 
URIs that superseded the 
current one.

externalRecords Object 
externalRecords 
(see below)

only if the URI is active and 
there are known links to similar 
records in other systems

Known records from other 
systems with the allele.

genomicAlleles A non-empty array
of objects 
alleleDefinition 
(see below)

only if the URI is active and 
alleleType is set to “nucleotide”, 
omitted when empty

A list of known definitions 
of the allele in the context 
of genomic reference 
sequences.

transcriptAlleles A non-empty array
of objects 
alleleDefinition 
(see below)

only if the URI is active and the  
alleleType is set to “nucleotide”, 
omitted when empty

A list of known definitions 
of the allele in the context 
of transcript reference 
sequences.

aminoAcidAlleles A non-empty array
of objects 
alleleDefinition 
(see below)

if and only if the URI is active 
and the alleleType is set to 
“amino-acid”

A list of known definitions 
of the allele in the context 
of amino-acid reference 
sequences.



externalRecords – object used in definition of canonical allele object above:

Name Type When
returned?

Description

dbSNP An array of 
objects

Only if 
non-empty

Objects contain the following fields:
• @id – link to record in dbSNP
• rs – rs number from dbSNP

ClinVarAlleles An array of 
objects

Only if 
non-empty

Objects contain the following fields:
• @id – link to Allele record in ClinVar
• alleleId
• preferredName

ClinVarVariations An array of 
objects

Only if 
non-empty

Objects contain the following fields:
• @id – link to Variation record in ClinVar
• variationId
• RCV – array of strings

alleleDefinition – object used in definition of canonical allele object above:

Name Type When returned? Description

hgvs An array of strings always Non-empty list of HGVS 
expressions defining the allele in the
context of single reference sequence.

referenceSequence A refseq URI always The URI of the reference sequence.

gene A gene URI If reference 
sequence has 
assigned gene

The URI of the gene assigned to the 
reference sequence

coordinates A non-empty array of 
objects coordinates 
(see below)

always A list of subsequences of reference 
sequence belonging to the allele

referenceGenome “NCBI36” or 
“GRCh37” or 
“GRCh38”

If and only if the 
reference sequence
linked above has 
the same field

Value of this property is taken from 
corresponding field in the reference 
sequence object with the URI given 
above.

chromosome one of the strings:
“1”, “2”, …, “22”, 
“X”, “Y”, “MT”

If and only if the 
reference sequence
linked above has 
the same field

Value of this property is taken from 
corresponding field in the reference 
sequence object with the URI given 
above.



coordinates – object used in definition of allele object above:

Name Type When returned? Description

start A non-negative integer always Begin of a reference 
subsequence covered 
by allele.

end A non-negative integer always End of a reference 
subsequence covered 
by allele.

startIntronOffset A non-negative integer if and only if the reference
sequence is transcript and 
the allele begins inside an 
intron

Distance (offset) of 
start position in an 
intron to the nearest 
exon.

startIntronDirection “+” or “-” if and only if the reference
sequence is transcript and 
the allele begins inside an 
intron

Direction of the offset 
defined above.

endIntronOffset A non-negative integer if and only if the reference
sequence is transcript and 
the allele ends inside an 
intron

Distance (offset) of 
end position in an 
intron to the nearest 
exon.

endIntronDirection “+” or “-” if and only if the reference
sequence is transcript and 
the allele ends inside an 
intron

Direction of the offset 
defined above.

referenceAllele String consisting of letters: 
'A', 'C', 'G', 'T' for genomic 
and transcript alleles or 
sequence of protein symbols
for amino-acid alleles

always Original reference 
subsequence defined 
by the coordinates 
above.

allele String consisting of letters: 
'A', 'C', 'G', 'T' for genomic 
and transcript alleles or 
sequence of protein symbols
for amino-acid alleles

always Sequence put in place 
of reference 
subsequence defined 
above.

Example 1:

request: HTTP GET http://reg.test.genome.network/allele/CA012345

http://reg.test.genome.network/allele/CA012345


response:
{
  "@context": "http://reg.test.genome.network/schema/allele.jsonld",
  "@id": "http://reg.test.genome.network/allele/CA012345",
  "type": "nucleotide",
  "externalRecords": {
    "dbSNP": [
      {
        "@id": "http://www.ncbi.nlm.nih.gov/snp/749469486",
        "rs": 749469486
      }
    ],
    "ClinVarVariations": [
      {
        "@id": "http://www.ncbi.nlm.nih.gov/clinvar/variation/186550",
        "variationId": 186550,
        "RCV": [ "RCV000166164" ]
      }
    ],
    "ClinVarAlleles": [
      {
        "@id": "http://www.ncbi.nlm.nih.gov/clinvar/?term=183678[alleleid]",
        "alleleId": 183678,
        "preferredName": "NM_000059.3(BRCA2):c.1543A>G (p.Thr515Ala)"
      }
    ]
  },
  "genomicAlleles": [
    {
      "hgvs": [ "NC_000013.11:g.32333021A>G" ],
      "referenceSequence": "http://reg.test.genome.network/refseq/RS542947913077",
      "coordinates": [
        {
          "end": 32333021,
          "allele": "G",
          "start": 32333020,
          "referenceAllele": "A"
        }
      ],
      "referenceGenome": "GRCh38",
      "chromosome": "13"
    }
  ],
  "transcriptAlleles": [
    {
      "coordinates": [
        {
          "end": 1770,
          "allele": "G",
          "start": 1769,
          "referenceAllele": "A"
        }
      ],
      "referenceSequence": "http://reg.test.genome.network/refseq/RS938330737581",
      "gene": "http://reg.genome.network/gene/GN1101",
      "hgvs": [ "NM_000059.3:c.1543A>G", "LRG_293t1:c.1543A>G" ]
    }
  ]
}



Reference Sequence
URL: http://{ServerName}/refseq/{id}
Fields description:

Name Type When returned? Description

@id A refseq URI always The URI of the reference sequence.

externalRecords Object 
externalRecords 

only if there are known 
links to similar records 
in other systems

Known records from other systems 
with the reference sequence.

type “chromosome”or 
“transcript” or 
“amino-acid”

always

referenceGenome “NCBI36” or 
“GRCh37” or 
“GRCh38”

if and only if the field 
“type” is set to 
“chromosome”

The genome build in which the 
chromosomal reference sequence is 
referenced.

chromosome one of the strings:
“1”, “2”, …, “22”,
“X”, “Y”, “MT”

if and only if the the 
field “type” is set to 
“chromosome”

gene A gene URI only if the type is 
“transcript”, may be 
omitted

The URI of a gene associated with 
this transcript reference sequence.

Example 1:
request: HTTP GET http://reg.test.genome.network/refseq/RS000065
response:
{
  "@context": "http://reg.test.genome.network/schema/refseq.jsonld",
  "@id": "http://reg.test.genome.network/refseq/RS000065",
  "type": "chromosome",
  "externalRecords": {
    "NCBI": {
      "@id": "http://www.ncbi.nlm.nih.gov/nuccore/NC_000017.11",
      "id": "NC_000017.11"
    }
  },
  "referenceGenome": "GRCh38",
  "chromosome": "17"
}

http://reg.test.genome.network/refseq/RS000065


Example 2:
request: HTTP GET http://reg.test.genome.network/refseq/RS011494

response:
{
  "@context": "http://reg.test.genome.network/schema/refseq.jsonld",
  "@id": "http://reg.test.genome.network/refseq/RS011494",
  "type": "transcript",
  "externalRecords": {
    "LRG": {
      "@id": 
"http://ftp.ebi.ac.uk/pub/databases/lrgex/LRG_321.xml#transcripts_anchor",
      "id": "LRG_321t6"
    },
    "NCBI": {
      "@id": "http://www.ncbi.nlm.nih.gov/nuccore/NM_001126116.1",
      "id": "NM_001126116.1"
    }
  },
  "gene": "http://reg.test.genome.network/gene/GN11998"
}

Example 3:
request: HTTP GET http://reg.test.genome.network/refseq/RS167707

response:
{
  "@context": "http://reg.test.genome.network/schema/refseq.jsonld",
  "@id": "http://reg.test.genome.network/refseq/RS167707",
  "type": "amino-acid",
  "externalRecords": {
    "NCBI": {
      "@id": "www.ncbi.nlm.nih.gov/nuccore/NP_001813.1",
      "id": "NP_001813.1"
    }
  }
}

http://reg.test.genome.network/refseq/RS167707
http://www.ncbi.nlm.nih.gov/nuccore/NM_001126116.1
http://reg.test.genome.network/refseq/RS011494


Gene
URL: http://{ServerName}/gene/{id}
Fields description:

Name Type When returned? Description

@id A gene URI always The URI of the gene.

externalRecords Object 
externalRecords

only if there are known links to 
similar records in other systems

Known records from other 
systems with the gene.

names An array of 
strings

if not empty A list of known gene's names 
(labels) not mentioned in the 
externalRecords.

Example:
request: HTTP GET http://reg.test.genome.network/gene/GN11998

response:
{
  "@context": "http://reg.test.genome.network/schema/gene.jsonld",
  "@id": "http://reg.test.genome.network/gene/GN11998",
  "externalRecords": {
    "NCBI": {
      "@id": "http://www.ncbi.nlm.nih.gov/gene/7157",
      "id": "7157"
    },
    "HGNC": {
      "@id": "http://www.genenames.org/cgi-bin/gene_symbol_report?
hgnc_id=HGNC:11998",
      "id": "HGNC:11998",
      "symbol": "TP53",
      "name": "tumor protein p53"
    }
  },
  "names": [
    "LFS1",
    "p53"
  ]
}

http://reg.test.genome.network/gene/GN11998


Query or register an allele using HGVS expression
HGVS is one of the standard notations for describing variants. Allele Registry allows for accessing and 
registering alleles using HGVS expressions. 

Query canonical allele by HGVS expression
Canonical allele can be queried by HGVS string with the following HTTP GET request:
http://{ServerName}/allele?hgvs={HGVS}
This query returns responses with single allele object. When given allele is not in the registry, the allele
object is also returned, but the field “@id” contains value "_:CA" instead of allele URI. In both cases 
the status HTTP SUCCESS is returned.

Example:
request: HTTP GET http://reg.test.genome.network/allele?hgvs=NC_000010.11:g.87894077C>T
response: analogical like for an allele URI

Bulk query of alleles with file containing HGVS expressions
In case of many HGVS queries the efficiency can be improved by grouping many HGVS expressions
in single text file and sending it as a single HTTP POST request. The file content must be sent as a
payload and the HTTP POST request must have the following syntax:

http://{ServerName}/alleles?file=hgvs

As a result the request will return vector of canonical allele objects in the same order as occurrences of
corresponding HGVS expression in the file. In case of an error corresponding vector element is going
to contain an error object instead of canonical allele object. Occurrence of an error for given HGVS
expression does not influence the results of the others expressions. 

(TODO – add an example)

Bulk query of alleles with VCF file
Similar bulk query can be run for VCF file. In this case the input file must be a valid VCF file and must
contain a ##contig parameter in the header for every chromosome id used in the file. Moreover each
##contig parameter should contain at least two fields named 'ID' and 'assembly'. In the current version
of Allele Registry the only allowed value of the field 'assembly' is 'GRCh38'. The file content must be
sent as a payload and the HTTP POST request must have the following syntax:

http://{ServerName}/alleles?file=vcf
(TODO – add an example)

http://reg.test.genome.network/allele?hgvs=NC_000010.11:g.87894077C%3ET


Register a new allele
Requests similar to those three described above can be used to register new alleles in Allele Registry. In
this case the following two modifications must be made:

• the type of request should be HTTP PUT instead of HTTP GET or HTTP POST
• authentication parameters must be added

This kind of request returns the same response as corresponding HTTP GET or HTTP POST one, the 
only difference is that status HTTP NOT FOUND is never returned (new allele is added if not found in 
the registry).

Example:
request: HTTP PUT http://reg.test.genome.network/allele?hgvs=NC_000010.11:g.87894077C  >T
response – the same as in the corresponding example with HTTP GET

http://reg.test.genome.network/allele?hgvs=NC_000010.11:g.87894077C%3ET
http://reg.test.genome.network/allele?hgvs=NC_000010.11:g.87894077C


Queries

All correct queries return list of matching objects in response's body and status HTTP OK. If there is no
matching object, the response body contains empty list and the returned status is also HTTP OK (HTTP
NOT FOUND is not used in case of queries). The HTTP addresses for querying objects depend on the 
object type:

• alleles – http://{ServerName}/alleles
• genes – http://{ServerName}/genes
• reference sequences – http://{ServerName}/refseqs

The type of query is defined by parameters added to the addresses above. All queries accept two special
optional parameters:

• skip – number of first records to skip (default 0)
• limit – maximal number of records to return (default is 100)

Alleles are always returned in order corresponding to their position on GRCh38 genome. 
Allele Registry allows only for query types described below.

Query objects by their names
Each type of object can be queried by one of his known names. This type of query can be executed by 
proper HTTP GET request with parameter “name”:

• alleles – http://{ServerName}/alleles?name={name}
• genes – http://{ServerName}/genes?name={name}
• reference sequences – http://{ServerName}/refseqs?name={name}

Remember that any of these queries may return empty list (if not found) or list containing more than 
one element (if the name is not unique). In all these cases the status HTTP OK is returned.

Example:
request: HTTP GET http://reg.test.genome.network/genes?name=TP53
response:
[
  {
    "@context": "http://reg.test.genome.network/schema/gene.jsonld",
    "@id": "http://reg.test.genome.network/gene/GN11998",
    "externalRecords": {
      "NCBI": {
        "id": "7157",
        "@id": "http://www.ncbi.nlm.nih.gov/gene/7157"
      },
      "HGNC": {
        "id": "HGNC:11998",
        "symbol": "TP53",
        "name": "tumor protein p53",
        "@id": "http://www.genenames.org/cgi-bin/gene_symbol_report?
hgnc_id=HGNC:11998"
      }
    },
    "names": [
      "LFS1",
      "p53"

http://reg.test.genome.network/genes?name=TP53


    ]
  }
]

Query canonical alleles by reference sequence locus
This type of query can return list of alleles defined in the context of given reference sequence and lying
in particular region of this sequence. The simplest version of this query just returns all alleles defined 
for given reference:
http://{ServerName}/alleles?refseq={name}
The region of interest can be specified by adding optional parameters “begin” and “end”:
http://{ServerName}/alleles?refseq={name}&begin={pos1}&end={pos2}
Both “begin” and “end” parameters are optional and may be omitted. Missing “begin” parameter means
“beginning of the reference sequence”, similarly missing “end” parameter means “the end of the 
reference sequence”.

Example:
request: HTTP GET 
http://reg.test.genome.network/alleles?refseq=NM_000546.5&begin=290&end=29  5
response:
[
  {
    "uri": "http://reg.test.genome.network/allele/CA000479",
    "type": "nucleotide",
    "genomicAlleles": [
      {
        "referenceSequence":"http://reg.test.genome.network/refseq/RS896675939861",
        "end": 7676390,
        "start": 7676387
      }
    ],
    "transcriptAlleles": [
      {
        "referenceSequence":"http://reg.test.genome.network/refseq/RS322512438994",
        "end": 292,
        "refAllele": "AAC",
        "start": 289
      }
    ]
  },
  {
    "uri": "http://reg.test.genome.network/allele/CA000497",
    "type": "nucleotide",
    "genomicAlleles": [
      {
        "referenceSequence":"http://reg.test.genome.network/refseq/RS896675939861",
        "end": 7676387,
        "refAllele": "C",
        "start": 7676386,
        "allele": "T"
      }
    ],
    "transcriptAlleles": [

http://reg.genome.network/alleles?refseq=NM_000546.5&begin=290&end=295
http://reg.test.genome.network/alleles?refseq=NM_000546.5&begin=290&end=295


      {
        "referenceSequence":"http://reg.test.genome.network/refseq/RS322512438994",
        "end": 293,
        "refAllele": "G",
        "start": 292,
        "allele": "A"
      }
    ]
  }
]

Query canonical alleles by genes 
Alleles can be queried by genes they are connected to. The query is called by the following HTTP GET

request: 

http://{ServerName}/alleles?gene={name} 

It returns list of matched alleles. 

(TODO – add an example)

Query canonical alleles by identifiers from external records
Alleles can be also queried by some identifiers copied from external systems, like dbSNP rs number or 
ClinVar variation identifier. This kind of query has the following format:
http://{ServerName}/alleles?{fieldName}={value}
Supported values of {fieldName} are shown in the table below:

Field Name example

ClinVar.variationId .../alleles?ClinVar.variationId=186550

ClinVar.alleleId .../alleles?ClinVar.alleleId=186550

ClinVar.RCV .../alleles?ClinVar.RCV=RCV000168487

dbSNP.rs .../alleles?dbSNP.rs=786204261

(TODO – add an examples)


	Bash 2
	Ruby 3
	Python 3
	Introduction
	Sending HTTP requests
	Bash
	Ruby
	Python

	Authentication
	Error responses
	Parameter set in HTTP header

	Objects exposed by this API
	Canonical Allele
	Reference Sequence
	Gene

	Query or register an allele using HGVS expression
	Query canonical allele by HGVS expression
	Bulk query of alleles with file containing HGVS expressions
	Bulk query of alleles with VCF file
	Register a new allele

	Queries
	Query objects by their names
	Query canonical alleles by reference sequence locus
	Query canonical alleles by genes
	Query canonical alleles by identifiers from external records


